MgB, Hot Electron Bolometers for Array Receivers
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Science Targets of Interest:
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« HEB operation at elevated temperature which can be achieved by 20-25 K mechanical
cryocoolers (in space)

» Achieving higher than in the state of the art NbN mixers IF bandwidth in order to enable
spectroscopic measurements of highly Doppler broadened THz lines (up to 8-10 GHz is
required).



Larger Bandwidth Needed at Higher
Frequencies
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Using Herschel HIFI, a scan
of GC at 1.9 THz had
features  spanning 450
km/sec.

Af = f,

A similar scan for the 4.7
THz Ol line would require
over 7 GHz to obtain the
same velocity span.



Superconductivity in MgB,

M. lavarone et al., Phys. Rev. Lett. 89, 187002 (2002).
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J. Nagamatsu et al., Nature 410, 63 (2001).
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H.J. Choi et al., Nature 418, 758 (2002).




MgB, Potential for HEB Applications

Material MgB, NbN MgO SiC Si
p (g cm3) 2.7 8.5 3.6 3.2 2.3
v, (km/s) 7.8 2.5 6.6 7.5 6
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Well acoustically matched to substrates of interest.

2-Temperature model predictions yield small effective T which will result in a large intermediate frequency (IF)
bandwidth.

5
Additional benefit of variable resistivity for impedance matching.



Comparison to SOA at 4.7 THz

SOA NbN HEB mixer| cyrrent MgB:
Parameter WG Q0 | QO HEB mixer

DSB noise temp. (K)| 1100 815 2300 @4.3 THz
IF noise BW (GHz) =~ 3 ~ 3 =
Operating temp. (K) 4.6 4.2 15

Array size Tx1 Tx1 1x1
LO type QCL QCL far-IR laser

WG) D. Biichel er al., "4.7-THz Superconducting Hot Electron Bolometer Waveguide Mixer,"
IEEE Trans. THz Sci. Technol., vol. 5, no. 2, pp. 207-214, 2015.
J. L. Kloosterman et al., "Hot electron bolometer heterodyne receiver with a 4.7-THz
Qo) quantum cascade laser as a local oscillator," Appl. Phys. Leir., vol. 102, p. 011123, 2013.



MgB, Quasi-Optical Mixers
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DSB Noise Temperature (K)

MgB, Quasi-Optical Mixers
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Goal: Waveguide Mixers

* Need to develop devices on SOI
substrates with 3-6 um device
layer thickness.

* Need to show that backside
alignment and etch of the handle
wafer do not effect device
performance.




HPCVD Grown MgB, Thin Films
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CVD Boron Thin Films as a Buffer
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e Obstacle: Reaction between Si and Mg around 450 C
e Solution: Intermediate Buffer layer
 MgO was the first choice, but smooth MgO films cracked during higher temperature
MgB, deposition
e Boron films first used to grow MgB2 on Cu (same issue) for SRF applications.



Films on Si Substrate
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= Poor Roughness of Boron films
lead to poor roughness of

MgB2 films.
= Very clean interfaces implies
room for improvement.




HEB Devices on Si Substrate (DC characterization)
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* 20 nm Film
* T. corresponds with what was seen for Films

* AT_is ~4 K, leading to poor sensitivity (expected problem is from film non-uniformity)
* J_is a factor of 2 lower than bare films (6 MA/cm? compared to >10MA/cm? in films)



HEB Devices on Si Substrate (RF characterization)
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* THz pumping of devices is easier than previous devices.
* Device Tc is somewhat lower
* Impedance matching is improved (low temp device resistance approx. 30 ohms)
* Gain bandwidth measurement done with microwave frequencies.
* Bandwidth identical to device on SiC substrate with similer film thickness (6.5 GHz).



Optimization of Films and Growth on SOI
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lon milling at a very shallow
angle can improve the
roughness significantly
(factor of 2-5). This was used
to achieve ~3 nm films with
Tc > 30K.
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Summary:

* Consistently see an IF bandwidth around 7 GHz for a 15 nm film
* Bandwidth confirmed even when moving to the polycrystalline films on Si
Substrates.
* Noise temperature of MgB2 HEBs about 2x larger than SOA NbN devices
 Still significant room for improvement, particularly with impedance matching
* NT of MgB2 HEBs on Si Substrate needs further work, particularly, more
uniform films to achieve smaller ATc.
* Polycrystalline films on Si have larger sheet resistance which will make
impedance matching easier.
* MgB2 films have been grown on SOI substrates and efforts are under way to

fabricate some WG coupled HEBs for frequencies from 1.9 THz to 4.7 THz.



